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Abstract

Intra-abdominal infections (IAI) are an important cause of morbidity and are frequently associated with poor prognosis,
particularly in high-risk patients.
The cornerstones in the management of complicated IAIs are timely effective source control with appropriate
antimicrobial therapy. Empiric antimicrobial therapy is important in the management of intra-abdominal
infections and must be broad enough to cover all likely organisms because inappropriate initial antimicrobial
therapy is associated with poor patient outcomes and the development of bacterial resistance.
The overuse of antimicrobials is widely accepted as a major driver of some emerging infections (such as
C. difficile), the selection of resistant pathogens in individual patients, and for the continued development of
antimicrobial resistance globally. The growing emergence of multi-drug resistant organisms and the limited
development of new agents available to counteract them have caused an impending crisis with alarming
implications, especially with regards to Gram-negative bacteria.
An international task force from 79 different countries has joined this project by sharing a document on the
rational use of antimicrobials for patients with IAIs. The project has been termed AGORA (Antimicrobials: A
Global Alliance for Optimizing their Rational Use in Intra-Abdominal Infections). The authors hope that AGORA,
involving many of the world's leading experts, can actively raise awareness in health workers and can
improve prescribing behavior in treating IAIs.

Background
Judicious, careful and rational use of antimicrobials is an
integral part of good clinical practice. This attitude max-
imizes the utility and therapeutic efficacy of treatment,
and minimizes the risks associated with emerging
infections and the selection of resistant pathogens. The
indiscriminate and excess use of antimicrobial drugs
appears the most significant factor in the emergence of
resistant microorganisms in recent years.
We propose that clinical leaders drive antimicrobial

stewardship and education programs to help standardize
and improve prescribing behaviors. Furthermore, we
argue that endorsement and guidance on the appropriate
use of antimicrobials from leading scientific societies
and clinical leaders within a specialty are vital to address
the global threat of antimicrobial resistance and to
provide support to policy makers.
AGORA, (Antimicrobials: A Global Alliance for Opti-

mizing their Rational Use in Intra-Abdominal Infections)
was conceived to actively raise the awareness of the ra-
tional and judicious use of antimicrobial medications in
the treatment of intra-abdominal infections, in modern
health care. This collaboration involves an international
multidisciplinary task force, promoted by the World
Society of Emergency Surgery (WSES), and endorsed by:
the Surgical Infection Society (SIS), the American
Association for the Surgery of Trauma (AAST), the
Panamerican Trauma Society (PTS), the Indian Society
for Trauma and Acute Care (ISTAC), the Korean Society
of Acute Care Surgery (KSACS), the World Society of
Abdominal Compartment Syndrome (WSACS), the South
African Society of Clinical Microbiology (SASCM), the
Hellenic Society for Chemotherapy, the Italian Society of
Anti-Infective Therapy (SITA), The Italian Society of

Anesthesiology, Analgesia, Resuscitation and Intensive
Therapy (SIAARTI), the Italian Society of Surgery (SIC),
the Italian Association of Hospital Surgeons (ACOI), the
Italian Society of Emergency Surgery and Trauma
(SICUT), the Italian Society of Intensive Care (SITI) and
the World Alliance Against Antibiotic Resistance
(WAAAR). WAAAR is a non-profit non-governmental
organization participating actively in the global fight
against antibiotic resistance.
It is the intent of AGORA to actively raise awareness

of healthcare providers and improve prescribing behaviors
when treating patients with IAIs worldwide.
This position paper aims to review the consequences of

antimicrobial use, the evidence behind the global
phenomenon of antimicrobial resistance, and to summarize
the general principles of antimicrobial therapy in the
modern management of patients with intra-abdominal
infections. A review of the scientific rationale of modern
antimicrobial pharmacotherapy is presented.

Methods
An extensive review of the literature was conducted
using the PubMed and MEDLINE databases, limited to
the English language. The resulting information was
shared by an international task force from 79 different
countries combined in the AGORA (Antimicrobials: A
Global Alliance for Optimizing their Rational Use in
Intra-Abdominal Infections) project. The resulting
document, detailing current knowledge and opinion, is
presented in this position and consensus statement. The
document is presented in light of the aim to facilitate
clinical guidance in the rational use of antimicrobials for
intra-abdominal infections.
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Results
The development of antimicrobial resistance and the
selection of pathogenic bacteria from use of antibiotics
Clinicians prescribing antibiotics have two potentially
conflicting responsibilities. First, clinicians should offer
optimal therapy for the individual patient under their
care by offering antimicrobials. Second, they should
preserve the efficacy of antimicrobials and minimize the
development of resistance and the selection of resistant
pathogens [1] by withholding antimicrobials.

Antimicrobials and resistance
The problem of antimicrobial resistance (AMR) is wide-
spread worldwide. Clinicians should be aware of their
role and responsibility for maintaining the effectiveness
of current and future antimicrobials. Health workers can
help tackle resistance by:

� enhancing infection prevention and control;
� prescribing and dispensing antimicrobials when they

are truly needed; and
� prescribing and dispensing the right antimicrobial(s)

to treat the illness.

Infections caused by antibiotic-resistant bacteria continue
to be a challenge. Rice [2] in 2008 coined the acronym of
“ESKAPE” pathogens including Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobac-
ter baumannii, Pseudomonas aeruginosa, and Enterobacter
species to emphasize that these bacteria currently cause the
majority of hospital infections and effectively “escape” the
effects of antibacterial drugs [3].
Although the phenomenon of AMR can be attributed

to many factors, there is a well-established relationship
between antimicrobial prescribing practices and the
emergence of antimicrobial resistant pathogens [4–6].
After they have emerged, resistant pathogens may be
transmitted from one individual to another [7]. While,
the indigenous intestinal microbiota provides an import-
ant host-defense mechanism by preventing colonization
of potentially pathogenic microorganisms, the intestinal
tract is also an important reservoir for antibiotic-
resistant bacteria [8, 9]. Antibiotics exert undue selective
pressure on bacteria in the intestine through a two-step
process. First, antibiotics kill susceptible bacteria from
the commensal intestinal microbiota. This favors
bacteria within the intestine that are already resistant,
have become resistant through mutation or through the
acquisition of exogenous DNA (e.g. plasmids) from cells
colonized in, or passing through, the intestinal tract.
Most feared by clinicians is the acquisition of multi-
drug resistant organisms (MDRO) in the intestinal
microbiota of patients [10]. Second, antibiotics promote
the overgrowth of MDRO present in the intestinal

microbiota [11, 12] thereby increasing the risks of
cross-transmission between patients [13] and increasing
the risk of untreatable or difficult-to-treat infectious
outbreaks [14]. Selective pressure from antibiotics com-
bined with ineffective infection control practices acceler-
ates the spread of resistant bacteria [15]. Thus, with
few new antibiotics being developed, particularly for
Gram-negative organisms, prudent antibiotic use is vital
for delaying the emergence of resistance [16].

Antibiotics and C. difficile infection
C. difficile infections have become more frequent, more
severe and more difficult to treat.
The prolonged use of antibiotics induces a change in

the intestinal flora and may result in a higher incidence
of C. difficile infections.
C. difficile is an anaerobic, spore forming, Gram-

positive bacillus, which may be part of the normal intes-
tinal microbiota in healthy newborns but is rarely
present in the gut of healthy adults [17]. A direct correl-
ation between antibiotic use and C. difficile infection
(CDI) has been well described [18]. Disruption of the
normal gut flora as a consequence of antibiotic use
provides an excellent setting for C. difficile to proliferate
and produce toxins [19].
The risk of CDI is increased up to 6-fold during and

in the subsequent month after antibiotic therapy [20].
Although nearly all antibiotics have been associated with
CDI, clindamycin, amoxicillin-clavulanate, cephalosporins
and fluoroquinolones have traditionally been considered
to pose the greatest risk [21–38].
In 2014, a systematic review of observational epidemio-

logical studies measuring associations between antibiotic
classes and hospital acquired CDI was published [30]. Of
569 citations identified, 13 case–control and 1 cohort study
(15,938 patients) were included. The strongest associations
were found for third-generation cephalosporins, clindamy-
cin, second-generation cephalosporins, fourth-generation
cephalosporins, carbapenems, trimethoprim-sulphonamides,
fluoroquinolones and penicillin combinations.
In the last two decades, the dramatic increase in inci-

dence and severity of CDI in many countries worldwide
[18], has made CDI a global public health challenge.
CDI represents the most common cause of diarrhea in

hospitalized patients. C. difficile colitis can be treated by
oral or intravenous metronidazole and/or oral or
intracolonic vancomycin [29]. In severe colitis, surgery
may be required [30].
In 2015, the WSES published guidelines for manage-

ment of C. difficile infection in surgical patients [18].

Antibiotics and invasive candidiasis
Usually, Candida spp. are kept under control by the
native bacteria and by the body's immune defenses.
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Antibiotics disrupt normal bacterial colonization and
may create an environment in which fungi can thrive.
The gastrointestinal tract is normally colonized by

yeasts, mainly Candida spp. [31–33]. It is believed that
invasive candidiasis predominantly originates from this
reservoir [34]. The mechanisms that allow Candida spp.
to cause invasive candidiasis and candidemia are quite
complex. Candida spp. are commensal members of the
gastrointestinal microflora and in homeostasis with the
host. However, when this homeostasis is disrupted, the
yeast can break through the intestinal mucosal barrier
and cause dissemination [35, 36]. This process may
involve many contributing factors and multiple mecha-
nisms [35]. The immunocompetent human host, with
his/her resident microbiota, is remarkably good at
maintaining a healthy symbiotic equilibrium. However,
chemotherapy and invasive surgical procedures, may re-
sult in a human host disequilibrium that facilitate fungal
invasion.

The global burden of antimicrobial resistance
Antimicrobial Resistance (AMR) poses a global challenge.
No single country, however effective it is at containing
resistance within its boundaries, can protect itself from
the importation of MDRO through travel and trade.
The global nature of AMR calls for a global response,

both in the geographic sense and across the whole range
of sectors involved. Nobody is exempt from the problem,
nor from playing a role in the solution.
Despite an increasing prevalence of MDRO worldwide,

the health and economic impact of these organisms is
often underestimated.
The impact of AMR worldwide is significant, both in

economic terms, and clinical morbidity and mortality
because it may:

� lead to some infections becoming untreatable;
� lead to inappropriate empirical treatment in

critically ill patients where an appropriate and
prompt treatment is mandatory;

� increase length of hospital stay, morbidity, mortality
and cost; and

� make necessary alternative antimicrobials which are
more toxic, less effective, or more expensive.

Antimicrobial resistance is a natural phenomenon
that occurs as microbes evolve. However, human
activities have accelerated the pace at which microor-
ganisms develop and disseminate resistance. Incorrect
and injudicious use of antibiotics and other antimi-
crobials, as well as poor prevention and control of
infections, are contributing to the development of
such resistance.

The impact of AMR worldwide is significant, both
in economic terms, and clinical morbidity and mortal-
ity [38–40].
Although the optimally effective and cost-effective

strategy to reduce AMR is not known, a multifaceted
approach is most likely to be successful [15].
Many calls to action on antimicrobial resistance have

been made over the past years, but there has been very
little progress. Countries with the strictest policies on
antibiotic prescription including Scandinavian countries
the Netherlands and Switzerland now report the lowest
rates of bacterial resistance [41]. However in most high
income countries, clinical use of antibiotics has not
declined, despite frequent calls to curtail overuse.
The World Health Organization (WHO) is now leading

a global effort to address antimicrobial resistance. At the
68th World Health Assembly in May 2015, the World
Health Assembly endorsed a global action plan to tackle
antimicrobial resistance [42]. It sets out five strategic
objectives:

� to improve awareness and understanding of
antimicrobial resistance;

� to strengthen knowledge through surveillance and
research;

� to reduce the incidence of infection;
� to optimize the use of antimicrobial agents; and
� to develop the economic case for sustainable

investment that takes account of the needs of all
countries, and increase investment in new
medicines, diagnostic tools, vaccines and other
interventions.

An alarming pattern of resistance involving multi and
pandrug-resistant Gram-negative bacteria is currently
emerging; multi-resistant Enterobacteriaceae is an in-
creasing major concern worldwide [43, 44]. Compara-
tive antimicrobial resistance data worldwide are
difficult to obtain and inevitably suffer from bias. In
high income countries, MDRO have historically been
confined to the hospital setting. Since the middle of
the 2000s, however, MDRO such as the extended-
spectrum (ESBL) producing beta-lactamase (ESBL)
Enterobacteriaceae have been widespread in the com-
munity setting [45].
Throughout the 1980s and 1990s, prolonged hospital

and intensive care unit stays were considered among the
most important risk factors for harboring ESBL Entero-
bacteriaceae along with exposure to broad-spectrum
antibiotics [46].
However, most ESBL producing infections are now

also in the community and healthcare-associated
settings as demonstrated in studies from Europe and
the Southeastern USA [47, 48].

Sartelli et al. World Journal of Emergency Surgery  (2016) 11:33 Page 4 of 32



The burden of MDRO infections in low-middle
income countries (LMIC) is difficult to quantify, because
surveillance activities to guide interventions require
resources [49].
In these countries, routine microbiologic culture

and sensitivity testing, especially in rural hospitals,
are not performed, due to lack of personnel, equip-
ment and financial resources. As a result antimicro-
bial therapy is empirical and a small collection of
antimicrobials may be overused. This approach,
although relatively inexpensive, may further increase
the emergence of AMR and hence sub-optimal
clinical outcomes [49].
Therefore, although resistance containment inter-

ventions in healthcare structures have mostly been
implemented in high-income countries, there is a
pressing need to intervene in the resistance pandemic
also in LMIC.

Mechanism of resistance
The treatment of infections is increasingly complicated by
the ability of bacteria to develop resistance to antibiotics.
Bacteria may be intrinsically resistant to one or more

classes of antibiotics, or may acquire resistance by de novo
mutation or by the acquisition of resistance genes from
other organisms.
Better understanding of mechanisms of antibiotic

resistance would allow the development of control
strategies to reduce the spread of resistant bacteria and
their evolution.
Bacteria may be intrinsically resistant to a class of

antibiotics or may acquire resistance.
Main mechanisms of resistance to antibiotics can be

caused by [50]:

� the inactivation or modification of the antibiotic;
� an alteration or the protection of the target site of

the antibiotic that reduces its binding capacity;
� the modification of metabolic pathways to

circumvent the antibiotic effect; and
� the reduced intracellular antibiotic accumulation by

decreasing permeability and/or increasing active
efflux of the antibiotic.

Bacteria can develop resistance to antibiotics by mutating
existing genes (vertical evolution) [51], or by acquiring new
genes from other strains or species (horizontal gene
transfer) [52].
Many of the antibiotic resistance genes are carried on

genetic elements (plasmids, transposons or phages) that
act as vectors that transfer these genes to other members
of the same bacterial species, as well as to bacteria in
another genus or species [52].

Evolution and dissemination of resistance
One of the main problems surrounding antibiotic resist-
ance genes is their association with mobile genetic ele-
ments (MGEs) such as conjugative plasmids, transposons,
and viruses or mobility genes from MGEs [53–55]. The
MGEs allow resistance to spread horizontally and dissem-
inate among different bacterial species. Although this as-
sociation seems improbable, it appears to occur frequently
and follows a series of evolutionary steps fueled by natural
selection (antibiotic selection). The power of modern
DNA sequence analysis allows us to better understand the
process of emergence of these genetic structures.
Most families of antibiotics present in nature are com-

pounds produced by fungi or bacteria; bacteria utilize
these compounds to eliminate competitor microorgan-
isms. As part of this arms race, many microorganisms
code for genes whose products neutralize antibiotics;
these genes may have been present in bacterial chromo-
somes for millions of years and they were probably not
mobile, as evidenced by recent findings. The massive use
of antibiotics probably favored selection of antibiotic
resistant bacteria resulting in large numbers of bacteria
coding for resistance genes. Additionally, genes with
mutations conferring novel forms of antibiotic resistance
may also rise in numbers under antibiotic pressure.
On the other hand, bacterial chromosomes are popu-

lated with transposable elements (insertion sequences
known as ISs), which jump frequently and randomly, as
demonstrated during in vitro experiments [56]. The
existence of large numbers of bacteria containing
resistance genes sets the stage for the next step which is
the association of AR genes with IS, which may cause
increased transcription of resistance genes (IS contain
powerful promoters) [57]; antibiotic selection once again
will then favor the survival of bacteria with higher
expression of resistance genes. ISs are also known to
promote the mobilization of contiguous pieces of DNA
and once there is a large number of bacteria with resist-
ance genes associated to ISs, the stage is set for the next
step which is the mobilization of the resistance genes.
Antibiotic resistance genes could be mobilized to

genetic structures, such as plasmids and phages, which
can move horizontally between bacterial cells including
different bacterial species. This is probably the path
followed by many plasmid encoded genes such as CTX-
M-type β-lactamase (found in plasmids in Enterobacteri-
aceae), which was probably mobilized by a transposon
from its original location in the chromosome of the
intestinal bacteria Kluyvera [58].
The association of resistance genes to these mobile

structures could occur through ISs (as explained
previously); this has been postulated as the origin of
many MGE. Alternatively, plasmids or phages may also
integrate in the bacterial chromosome in the vicinity of

Sartelli et al. World Journal of Emergency Surgery  (2016) 11:33 Page 5 of 32



resistance genes and then mobilize the resistance genes
as these structures excise from chromosomes [55].
Some of these gene associations are ancient and they

have been dragging genes that confer bacteria with
different abilities including protection from harmful
compounds. Some of them have lost most of the genetic
information retaining few MGE genes such as transpo-
sases, integrases or genes involved in conjugation
(relaxosome) [55]. The examples of these ancient
platforms are integrons which have integrases derived
from phages [55] and conjugative integrative elements
such as the staphylococcal SCCmec which contains
genes allowing conjugation (similar to plasmids) [59].
Additionally, conjugal plasmid integration (formation of
Hfr) and phages (generalized transduction) could pro-
mote the transfer of large sections of bacterial genome
including resistance genes) [60, 61].
The antibiotic selection is responsible for large numbers

of bacteria with antibiotic resistance genes; the combin-
ation of a large number of resistance genes and recombin-
ant nature of bacterial chromosomes creates the ideal
scenario for combination of genes. Antibiotic selection
will influence every single genetic event (recombination,
excision, conjugation, integration) allowing the survival of
bacteria with ideal resistance gene expression; only
changes that are meaningful (high benefits and low cost)
will prevail, the rest of them will disappear or they will
circulate at undetectable levels. The MGEs detected by
the current gene detection analysis, including metage-
nomic analysis, correspond to the tip of the iceberg, as they
represent the most successful gene associations. The more
we use antibiotics, the more efficient MGEs will evolve.

Antibiotic resistance in Enterobacteriaceae
Resistance to beta-lactam antibiotics Resistance to
beta-lactams in Enterobacteriaceae is mainly conferred by
beta-lactamases. These enzymes inactivate beta-lactam an-
tibiotics by hydrolysis. Beta-lactamases are commonly
classified according to two systems: the Ambler molecular
classification and the Bush–Jacoby–Medeiros functional
classification [62].
The Ambler scheme classifies beta-lactamases into

four classes according to the protein homology of
enzymes. Beta-lactamases of class A, C, and D are serine
beta-lactamase and class B enzymes are metallo-beta-
lactamases [63]. The Bush–Jacoby–Medeiros functional
scheme is based on functional properties of enzymes
and on their ability to hydrolyze specific beta-lactam
classes [64]. This classification was updated in 2010 [65].
The updated system includes group 1 (class C) cephalos-
porinases; group 2 (classes A and D) broad-spectrum,
inhibitor-resistant, extended-spectrum beta-lactamases
and serine carbapenemases; and group 3 (class B)
metallo-beta-lactamases [65].

Group 1 enzymes are cephalosporinases belonging to
molecular class C. They are more active on cephalosporins
than benzylpenicillin. It includes AmpC beta-lactamases.
AmpC beta-lactamases are clinically important cephalos-
porinases capable of inactivating cephalotin, cefazolin,
cefoxitin, most penicillins, and beta-lactamase inhibitor-
beta-lactam combinations. AmpC-hyperproducing mu-
tants are resistant to penicillins, aztreonam, third gener-
ation cephalosporins including cefotaxime, ceftazidime,
ceftriaxone and even ertapenem when the enzyme is mas-
sively expressed. Imipenem, meropenem and doripenem
remain the most active beta-lactams against AmpC beta-
lactamases [66].
Cefepime, a fourth-generation cephalosporin with

broader spectrum activity compared to ceftriaxone, is a
poor inducer of AmpC beta-lactamase. Many AmpC-
producing organisms are susceptible to cefepime because
cefepime is poorly hydrolyzed by the AmpC beta-
lactamase enzyme [67]. However, the role of cefepime in
treating infections caused by AmpC-producing organisms
is controversial because of the inoculum effect. In vitro
studies showed a high inoculum effect. If a 100-fold-
higher inoculum is used, cefepime MIC increases dramat-
ically for some AmpC producers [68]. Clinical studies
demonstrated that cefepime may be a reasonable option
for the treatment of invasive infections due to AmpC
beta-lactamase-producing organisms when adequate
source control is achieved [69].
Group 2 (classes A and D) represent the largest group

of beta-lactamases, it includes ESBL producing Entero-
bacteriaceae and carbapenemases (class A) and OXA
beta-lactamases (class D).
ESBL are enzymes capable of hydrolyzing and in-

activating a wide variety of beta-lactams, including
third-generation cephalosporins, penicillins, and aztre-
onam [70–72]. Most ESBLs of clinical interest are
encoded by genes located on plasmids. These plasmids
may also carry genes encoding resistance to other multiple
drug classes including aminoglycosides and fluoroquino-
lones [73].
The main ESBL enzymes imparting antibiotic resist-

ance are TEM-, SHV-, and CTX-M.
Although hyperproduction of beta-lactamases or add-

itional resistance mechanisms may hamper the antibiotic
effectiveness, most TEM, SHV and CTX-M variants
remain susceptible in vitro to beta-lactam/beta-lactam
inhibitor combinations (BLBLI) such as amoxicillin-
clavulanate or piperacillin-tazobactam. However, the
efficacy of BLBLI for treating serious ESBL infections is
controversial [66]. For example, the increase in piperacil-
lin/tazobactam MICs when bacterial inocula reach 107

colony forming units/mL is concerning, and may indicate
the presence of other mechanisms of resistance [73].
Furthermore, in critically ill patients the pharmacokinetic
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properties of beta-lactams are modified and these patients
may have adverse outcomes as a result of sub-optimal
antibiotic exposure [74].
Rates of CTX-M infections have increased during the

last decade compared with rates of TEM- and SHV-
infections [75]. The diffusion of CTX-M-producing
Enterobacteriaceae are common in Southeast Asia and
Eastern Mediterranean countries (estimated rates of
intestinal carriage, ~60 and ~30 %, respectively), there-
fore travel in these areas is a risk factor for acquisition
[66, 76]. Carriage rates in the community are now above
5–10 % in many other geographic areas [76].
The OXA-type beta-lactamases are so named because

of their oxacillin-hydrolyzing abilities. OXA beta-
lactamases have resistance limited to the penicillins, but
some became able to confer resistance to cephalosporins
[77, 78]. OXA-1 and OXA-10 beta-lactamases have only
a narrow hydrolytic spectrum. However, other OXA
beta-lactamases including OXA-11, -14, -15, -16, -28,
-31, -35 and -45 confer resistance to cefotaxime, ceftazi-
dime and aztreonam [66]. OXA-23 and OXA-48 are
classes of carbapenemases that belong to OXA-type
beta-lactamases with carbapenem-hydrolyzing activities
[79, 80]. While OXA-23 appears most frequently in A.
baumannii, OXA-48 enzymes have now become wide-
spread in the Enterobacteriaceae, especially in Mediter-
reanean countries [79].
K. pneumoniae carbapenemases (KPCs) are beta-

lactamases produced by Gram-negative bacteria. They
efficiently hydrolyse penicillins, all cephalosporins, mono-
bactams, beta-lactamase inhibitors, and even carbapenems.
KPCs are becoming an increasingly significant problem
worldwide [81]. The first plasmid-encoded serine carbape-
nemase in the KPC enzyme family was discovered in the
USA in 1996 and reported in 2001 [66]. KPC is the most
common carbapenemase in the United States and in some
European countries such as Italy. However, different
groups of enzymes possessing carbapenemase proper-
ties have emerged, and are spreading worldwide.
KPC-producing K. pneumoniae pose a serious threat
in clinical situations where administration of effective
empiric antibiotics is essential to prevent mortality
following bacteraemia and infections in immunocom-
promised patients including organ transplant recipi-
ents and those with cancer [81–86]. A major concern
is the emergence of colistin resistant KPC-positive K
pneumoniae isolates. This is of particular clinical
relevance, as colistin is currently a key component of
treatment combinations. The selection of colistin resistant
KPC producing strains probably results from the
increasing use of colistin, in areas where KPC-positive K
pneumoniae have spread [87]. In light of the emergence of
a plasmid-borne colistin resistance gene, the prudent use
of colistin is warranted [43].

Group 3 (Class B) metallo-beta-lactamases (MBLs) dif-
fer structurally from the other beta-lactamases by their
requirement for a zinc ion at the active site. They are all
capable of hydrolysing carbapenems. In contrast to the
serine beta-lactamases, the MBLs have poor affinity or
hydrolytic capability for monobactams and are not inhib-
ited by clavulanic acid or tazobactam. The most common
metallo-beta-lactamase families include the IMP, VIM and
NDM. [88, 89]. A currently emerging MBL is the NDM
(New Delhi metallo-beta-lactamase). NDM-1 was first de-
tected in 2008 in a patient returning to Sweden from India
[90, 91]. NDM-1 has been shown to be present at signifi-
cant frequency within Enterobacteriaceae in India and has
subsequently been shown to be present in bacterial
isolates in a number of countries worldwide [91].

Resistance to fluoroquinolones All Enterobacteriaceae
are naturally susceptible to fluoroquinolones. The
process by which susceptible strains become highly
fluoroquinolone resistant is thought to be a result of a
series of sequential steps and several mutations are needed
to produce a high level of fluoroquinolone resistance
[92, 93]. High-level resistance emerges after successive
chromosomal mutations in the DNA gyrase- encoding
gyrA gene and topoisomerase IV-encoding parC gene
[93]. The over-expression of efflux pumps may also
play a role in the high level of resistance in certain
strains. While there are many genes that are assumed
to encode a drug transporter protein in Enterobacteri-
aceae, only AcrAB/TolC overexpression plays a major
role in E. coli as a main efflux pump implicated in
extruding fluoroquinolones [92]. Resistance to fluoroqui-
nolones can also be mediated by the plasmid-encoded qnr
genes, which confer protection of bacterial topoisome-
rases against fluoroquinolones, the plasmid-encoded efflux
pump qepA and the aminoglycoside-modifying enzyme
AAC(6′)-Ib-cr that partly inactivate ciprofloxacin [92].

Resistance to aminoglycosides Aminoglycosides
resistance occurs through several mechanisms that can
simultaneously coexist. Aminoglycosides resistance in
Enterobacteriaceae relies mainly on the genes encoding
aminoglycoside-modifying enzymes (AMEs). AMEs ham-
per antibiotic activity. AMEs are often located on plasmids
that carry multiple resistance genes, including ESBL [66].
Current rates of co-resistance in hospital-acquired ESBL
are 50–60 % for gentamicin and 10–20 % to amikacin
[66]. Other described mechanisms of resistance include
modification of the antibiotic target by mutation of
the 16S rRNA or ribosomal proteins, methylation of
16S rRNA (by RNA methlysases which genes are
often co-located with beta-lactamase encoding genes),
reduced permeability and/or increasing active efflux
of the antibiotic [94].
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Antibiotic resistance in Non-fermenting gram-negative
bacteria
Non-fermenting Gram-negative bacteria (P. aeruginosa,
S. maltophilia and A. baumannii) are intrinsically resist-
ant to many drugs and can acquire resistance to virtually
any antimicrobial agent. A variety of resistance mechanisms
have been identified in P. aeruginosa and other Gram-
negative non-fermenting bacteria, including impermeable
outer membranes, expression of efflux pumps, target alter-
ation and production of antibiotic-hydrolyzing enzymes
such as AmpC beta-lactamases that are either chromosom-
ally encoded or acquired [95]. These mechanisms may be
present simultaneously, conferring multiresistance to differ-
ent classes of antibiotics. These mechanisms may also allow
transmission to multiple strains of bacteria [66].
P. aeruginosa is intrinsically resistant to a number of

beta-lactam antibiotics including amoxicillin, first and
second generation cephalosporins, cefotaxime, ceftriax-
one and ertapenem. Effective agents include ticarcillin,
piperacillin, ceftazidime, cefepime, imipenem, merope-
nem and doripenem. Aztreonam activity is variable [66].
Unlike tazobactam, clavulanate is a strong inducer of
AmpC in P. aeruginosa [96] P. aeruginosa also has the
ability to acquire beta-lactamases, including ESBL and
carbapenemases [66]. The P. aeruginosa genome con-
tains several different multidrug resistance efflux pumps,
which reside in the membrane and remove antimicro-
bials and toxins, thereby lowering their concentration in-
side the cell to sub-toxic levels. Overproduction of these
pumps reduces susceptibility to a variety of antibiotics
[97]. The most common system is MexAB-OprM. Its
overexpression confers resistance to ticarcillin, aztreonam,
and at a lesser extent, meropenem [98]. Reduced outer-
membrane permeability caused by qualitative or quantita-
tive alterations of the OprD porin, which manages the
passage of imipenem through the outer membrane,
confers P. aeruginosa a basal level of resistance to carba-
penems, especially to imipenem [99].
The mechanisms of AMR in A. baumannii are various,

and generally include production of beta-lactamases, im-
permeable outer membrane, expression of efflux pumps,
and change of targets or cellular functions such as alter-
ations in penicillin-binding proteins (PBPs). The PBPs
play a crucial role in the synthesis of peptidoglycan, an
essential component of the bacterial cell wall. A.
baumannii naturally produces a non-inducible AmpC-
type cephalosporinase (ACE-1 or ACE-2) and an OXA-
51-like carbapenemase which confers, at basal levels of
expression, intrinsic resistance to aminopenicillins, first and
second generation cephalosporins and aztreonam. Ertape-
nem naturally lacks activity against non-fermenting Gram
negative bacteria including A. baumannii [100]. Overpro-
duction of the AmpC-type cephalosporinase confers
acquired resistance to carboxypenicillins, ureidopenicillins

and third generation cephalosporins. The emergence of
carbapenem-resistant clones of A baumannii has been re-
ported since the late 1980s. Carbapenem resistance can re-
sult from the over-expression of OXA-51-like oxacillinase,
and from the acquisition of OXA-23-like, IMP, VIM, SIM
or, more recently, NDM-type carbapenemases [101]. Ac-
quired resistances to fluoroquinolones (mutations in gyrA
and/or parC) and aminoglycosides (plasmid-borne AMEs)
may be observed in ESBL as well as carbapenemase-
producing A. baumannii strains [66]. Colistin resistant iso-
lates are now increasing worldwide. Resistance to colistin is
thought to be mediated by modifications of the lipopolysac-
charides of the bacterial cell membrane that interfere with
the agent’s ability to bind bacterial targets [100].

Antibiotic resistance in Enterococci
Enterococci are intrinsically resistant to some penicillins,
all cephalosporins, and, at a low level, to aminoglyco-
sides. Additionally, they have acquired resistance to
many other classes of antibiotics [102, 103].
Enterococci have intrinsic resistance to most beta-

lactam antibiotics because of the low affinity penicillin
binding proteins (PBPs). Attachment of beta-lactam
agents to PBPs results in impaired cell wall synthesis
and, in most cases, programmed cell death via creation
of reactive oxygen species. Enterococci express low-
affinity PBPs (PBP5 in E. faecium, PBP4 in E. faecalis)
that bind weakly to beta-lactam antibiotics. Enterococci
may develop increased resistance to penicillins through
acquisition of beta-lactamases (very rare) or PBP4/5 mu-
tations [104]. Higher level of resistance in E. faecium has
been attributed to over production of low affinity PBP-5,
a protein that can take over the function of all PBPs
[104]. A variety of point mutations have been described
in both E. faecium and E. faecalis [104]. In addition, en-
terococci are “tolerant” to the activity of beta-lactams,
and may appear susceptible in vitro but develop toler-
ance after exposure to penicillin. This property is an
acquired characteristic. Enterococci quickly develop
tolerance after exposure to as few as five doses of
penicillin [105, 106].
Enterococci exhibit intrinsic low-level resistance to all

aminoglycosides, precluding their use as single agents.
Intrinsic resistance is attributed to an inability of the
aminoglycoside to enter the cell (where they act by inhi-
biting ribosomal protein synthesis) [104]. While intrinsic
mechanisms result in low-level aminoglycoside resist-
ance, acquisition of mobile genetic elements typically
underlies high-level aminoglycoside resistance in both E.
faecium and E. faecalis. High-level resistance most
frequently occurs through acquisition of a bifunctional
gene encoding aph(2′′)-Ia-aac(6′)-Ie, which inactivates
aminoglycosides [106]. However, several other genes
have been identified that confer gentamicin resistance,

Sartelli et al. World Journal of Emergency Surgery  (2016) 11:33 Page 8 of 32



including aph(2′′)-Ic, aph(2′′)-Id and aph(2′′)-Ib [107].
These genes are minor contributors to resistance com-
pared to aph(2′′)-Ia-aac(6′)-Ie. Their prevalence varies
by geographical region [104].
The acquisition of glycopeptides resistance by entero-

cocci has seriously affected the treatment and control of
these organisms [108]. Glycopeptides act by binding to
the pentapeptide precursors of enterococci, thereby inhi-
biting cell wall synthesis. Glycopeptide-resistant organ-
isms modify these pentapeptide precursors, which bind
glycopeptides with 1000-fold lower affinity than normal
precursors [104]. Various phenotypes of vancomycin-
resistant enterococci (VRE) have been characterized;
VanA and VanB operons are by far the most preva-
lent in human glycopeptide-resistant enterococci
(GRE) infections [104]. GRE have emerged as a major
cause of nosocomial infections. The majority of GRE
infections have been attributed to E. faecium, though
glycopeptide resistance occurs in E. faecalis and other
Enterococcus species as well [109].

Antibiotic resistance in Bacteroides fragilis
B. fragilis is the most frequently isolated anaerobic
bacteria, perhaps because it is both one of the most
prominent in the intestinal microbiota, and is one of the
easiest to culture in routine laboratory conditions. Beta-
lactam antibiotics and 5-nitroimidazoles have been
extensively used against anaerobic bacteria. The classical
mechanisms of resistance to beta-lactams include produc-
tion of beta-lactamases, alteration of penicillin-binding
proteins (PBPs), and changes in outer membrane perme-
ability to beta-lactams [110]. The most common mechan-
ism at this time is inactivation by one of the various groups
of beta-lactamases encoded by the cepA gene. Many beta-
lactamases from the B. fragilis group are cephalosporinases
that may be inhibited by lactamase inhibitors (clavulanic
acid, and tazobactam). This explains the susceptibilities of
many Bacteroides strains to the beta-lactam/beta-lactamase
inhibitor combinations [111, 112].
Bacterial resistance to carbapenems arises because of

the production of metallo-beta-lactamase encoded by
the cfiA gene [113]. cfiA is normally poorly expressed.
However, increased expression of cfiA, caused by the
acquisition of an insertion sequence (IS) upstream of the
gene, can lead to high-level carbapenem resistance.
Metronidazole, the first 5-nitroimidazole to be used

clinically, was introduced in 1960, but it was not until
1978 that Ingham et al. reported the first clinical isolate
of B. fragilis that was metronidazole-resistant after long-
term therapy [114]. A wide range of metronidazole re-
sistance mechanisms have been described in B. fragilis
including decreased activity or total inactivation of elec-
tron transport chain components [115], overexpression
of multidrug efflux pumps [116] and overexpression of

DNA repair protein (RecA protein). However, the most
common mechanism of resistance consists in the expres-
sion of 5-nitroimidazole nitroreductases (encoded by the
nimA-G genes) which are located on the chromosome or
on a plasmid and transform 4- or 5-nitroimidazole genes
to 4- or 5-aminoimidazoles [115]. Metronidazole-resistant
strains of the B. fragilis group have been described in
several countries, but in general, resistance is low [117].
As routine susceptibility testing of anaerobic bacteria in
most laboratories is only performed in blood or other
severe infections, it is difficult to estimate how frequent
MDR B. fragilis group strain is.

Antibiotic resistance in intra-abdominal infections
Surveillance studies can help clinicians to identify trends
in pathogens incidence and antimicrobial resistance, in-
cluding identification of emerging pathogens at national
and global levels.
Some epidemiological studies have monitored anti-

microbial resistance in IAIs identifying changes in
resistance patterns, mostly of Gram negative bacteria.

ESBL-producing Enterobacteriaceae
In the setting of intra-abdominal infections the main
issue of resistance is due to ESBL producing Enterobac-
teriaceae [118]. Since 2002, the Study for Monitoring
Antimicrobial Resistance Trends (SMART) has moni-
tored the in vitro antibiotic susceptibility patterns of
clinical Gram-negative collected worldwide from intra-
abdominal cultures [119]. Limitations include the small
number of contributing centers per country, and the
characteristics of participating centers which are usually
major teaching or tertiary-care centers.
From 2002 to 2011, the prevalence of MDR Gram

negative bacilli, especially ESBL producers, has increased
worldwide with regional variations in their distribution
[119]. The prevalence of ESBLs producers in IAI isolates
has steadily increased over time in Asia, Europe, Latin
America, the Middle East, North America and the South
Pacific. In contrast, the trend for ESBLs in intra-
abdominal infection isolates from Africa has surprisingly,
statistically significantly, decreased over time [119].
However only 7 African sites (3.9 %) (1 from Morocco, 2
from Tunisia and 4 from South Africa) were involved in
the SMART Study.
Although ESBLs producing Enterobacteriaceae are

common in hospital acquired IAIs, they are now being
seen in community acquired IAIs as well as. In 2010,
Hawser et al. [120] reported the incidence of ESBLs
producers in community and hospital acquired IAI in
Europe from 2002 to 2008. In order to differentiate
community-acquired from hospital acquired IAIs,
isolates were divided into those obtained from cultures
collected <48 and ≥48 h after hospital admission, though
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this simple cut-off may result in mis-classification of
some IAIs.
The SMART Study data showed a significant increase

in ESBL-positive E. coli isolates (from 4.3 % in 2002 to
11.8 % in 2008 [P < 0.001]) with a smaller (and not
statistically significant) increase in ESBL-positive K.
pneumoniae isolates (increasing from 16.4 to 17.9 %
[p > 0.05]) in Europe from 2002 to 2008. Hospital-
acquired isolates were more common than community-
acquired isolates, at 14.0 versus 6.5 %, respectively, for E.
coli (P < 0.001) and 20.9 versus 5.3 %, respectively, for K.
pneumoniae (P < 0.01) [120].
In the CIAOW Study [121] (Complicated intra-

abdominal infections worldwide observational study), 68
medical institutions collaborated in a worldwide multi-
center observational study, during a six-month study period
(October 2012-March 2013). Among intra-operative
isolates, ESBL producing E. coli isolates comprised 13.7 %
(75/548) of all E. coli isolates, while ESBL producing K.
pneumoniae isolates represented 18.6 % (26/140) of all K.
pneumoniae isolates. ESBL producing Enterobacteriaceae
were more prevalent in patients with healthcare-associated
IAIs than they were in patients with community-acquired
IAIs. Among healthcare associated infections, ESBL-
positive E. coli isolates comprised 20.6 % (19/92) of all iden-
tified E. coli isolates, while ESBL-positive K., pneumoniae
isolates made up 42.8 % (15/35) of all identified K. pneumo-
niae isolates.

Klebsiella pneumoniae Carbapenemases
K. pneumoniae carbapenemases (KPCs) are becoming an
increasingly significant problem worldwide [122]. E. coli
isolates from IAIs demonstrate consistently low resist-
ance to carbapenems since the beginning of SMART. K.
pneumoniae also continue to remain susceptible to
carbapenems. Although carbapenem activity against K.
pneumoniae from IAIs is also high, it is slightly lower
than activity against E. coli. A total of 2841 clinical iso-
lates of K. pneumoniae from intra-abdominal infections
worldwide were collected in the SMART study during
2008 and 2009 [122]. Globally, 6.5 % of isolates were
ertapenem resistant based on the June 2010 clinical
breakpoints published by the Clinical and Laboratory
Standards Institute, with MICs of ≥1 μg/ml [122].

Pseudomonas aeruginosa
P. aeruginosa was the third most common pathogen in
IAIs at a rate of 5 % in the SMART Study [110]. In
2013, Babinchak et al. reported the trends in susceptibil-
ity of selected Gram-negative bacilli isolated from IAIs
in North America from 2005 to 2010 [114]. The resist-
ance of P. aeruginosa to fluoroquinolones significantly
increased over time, from approximately 22 % in 2005,
to 33 % in 2010. Imipenem activity remained unchanged

with 20 % resistance. During this period, resistance to
piperacillin-tazobactam, cefepime and ceftazidime
remained unchanged at 23 to 26 %. [123]. However, the
SMART Study demonstrated that the activity of select
antimicrobials varied in different regions of the world. In
South Africa during 2004–2009, P. aeruginosa resistance
to piperacillin-tazobactam was 8 %, while it was approxi-
mately 25 % to cefepime, ceftazidime and imipenem, and
27 % to amikacin [119]. In China, during relatively the
same time period (2002–2009), the resistance of P. aeru-
ginosa to amikacin was 12 %, and to piperacillin-
tazobactam was 8 % [119].
In the CIAOW study, among the microorganisms

isolated from intraoperative samples, isolates of P.
aeruginosa comprised 5.6 % of all aerobic identified
bacteria. However, no significant differences between
community acquired infections and healthcare associ-
ated infections (5.4 % in community acquired infec-
tions, versus 5.7 % healthcare associated infections)
was demonstrated [121].

Enterococci
Among Gram-positive bacteria, enterococci play a
significant role in IAI. Some studies have demonstrated
poor outcomes among patients with documented
enterococcal infections, particularly in those with post-
operative IAI [124–127] where enterococci coverage
should be always considered.
In 2012 the Dutch Peritonitis Study Group analyzing

all patients from the RELAP trial found that the
presence of only gram positive cocci, predominantly
Enterococcus spp., was associated with worse outcome,
although in secondary peritonitis microbial profiles did
not predict ongoing abdominal infection after initial
emergency laparotomy [128].
The Montravers EBIIA (Etude épidémiologique Bac-

tério-clinique des Infections Intra-Abdominales) study
[129] described the clinical, microbiological and resistance
profiles of community-acquired and nosocomial IAI. This
study reported an increase in the prevalence of nosoco-
mial E. faecalis infections in patients (33 % in hospital-
acquired infections, versus 19 % in community-acquired
infections; P < 0.05). Although enterococci are found in
community-acquired infections (11.8 %), they were far
more prevalent in hospital-acquired infections (24.2 %).
In the CIAOW Study [121], among all the aerobic

Gram-positive bacteria identified in the intraoperative
samples, Enterococci (E. faecalis and E. faecium) were
the most prevalent bacteria, representing 15.9 % of all
aerobic isolates. Although Enterococci were also present
in community-acquired infections, they were more
prevalent in healthcare-associated infections (22.3 % in
health-care IAIs versus 13.9 % in community-acquired
infections).
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Methicillin resistant Staphylococcus aureus (MRSA)
Methicillin resistant Staphylococcus aureus (MRSA) is
not commonly isolated from patients with community-
acquired intra-abdominal infection [121]. Although
community-acquired MRSA has been reported in many
settings, MRSA has less impact in community-acquired
IAI. However, it should be always considered in the case
of wound infections. MRSA should be suspected in
patients with health care–associated IAI known colonized
with the organism or who are at risk because of prior
treatment failure and significant antibiotic exposure. The
susceptibility pattern differs between community-acquired
and hospital acquired MRSA.

Salmonella typhi
S. typhi infection may lead to diffuse peritonitis followed
by ileal perforations in endemic countries [130].
The emergence of multidrug-resistant (MDR) typhoid

fever is a major global health threat affecting many coun-
tries where the disease is endemic, such as countries in
South-Central and Southeast Asia and many parts of
Africa and Latin America [131]. In the past, S. typhi
infections were routinely treated with chloramphenicol,
ampicillin, or trimethoprim-sulfamethoxazole, but MDR
to these antibiotics started to emerge in 1990 [132]. In re-
sponse, a shift towards the prescription of fluoroquino-
lones or third-generation cephalosporins has occurred.
Singhal et al. [133] reported the trends in antimicro-

bial susceptibility of S. typhi from North India over a
period of twelve years (2001–2012). In 852 isolates of S.
typhi, a statistically significant decreased (p <0.001)
resistance to chloramphenicol, ampicillin and and co-
trimoxazole was observed. Resistance to nalidixic acid
was found to be highest amongst all the antibiotics; it
has been rising since 2005 and is presently 100 %. Cipro-
floxacin resistance was relatively stable over the time
period studied with a drastic increase from 5.8 % in
2008 to 10 % in 2009, since then it has increased in
2011–12 to 18.2 % [133].

Bacteroides fragilis
Anaerobes are the predominant components of the
bacterial flora of normal human mucous membranes. B.
fragilis strains are one of commonly isolated commen-
sals in the setting of IAIs. Most clinical laboratories do
not routinely perform the susceptibility testing of anaer-
obic isolates. In fact, their isolation requires appropriate
methods of collection, transportation, and cultivation of
specimens. Consequently, the treatment of anaerobic
infections is often selected empirically [134].
B. fragilis strains are mostly sensitive to metronidazole,

beta-lactam/beta-lactamase inhibitors and carbapenems.
However, in the past years antibiotic resistance has
increased among anaerobes and the susceptibility of

anaerobic bacteria to antimicrobial agents has become
less predictable [134].
Data of a national survey on antimicrobial resistance

in Bacteroides strains, including 6574 isolates collected
in 13 medical centers in United States from 1997 to
2007 were published in 2010 [135]. The study analyzed
in vitro antimicrobial resistance to both frequently used
and newly developed anti-anaerobic agents. Percent re-
sistance was calculated using breakpoints recommended
for the respective antibiotic by the CLSI or United States
Food and Drug Administration. These data indicated
that the carbapenems (imipenem, meropenem, ertape-
nem, and doripenem) and piperacillin-tazobactam were
the most active agents against these pathogens, with
resistance rates of 0.9–2.3 %. Metronidazole and tigecyc-
line were the most active antibiotics among the non-
beta-lactam agents. Metronidazole-resistant Bacteroides
strains were also first reported during that period.
The susceptibilities of 824 Bacteroides fragilis group

isolates against nine antibiotics were evaluated in a
Europe-wide study involving 13 countries [136]. Pipera-
cillin/Tazobactam was more active than amoxicillin/cla-
vulanic acid (3.1 and 10.4 % resistance, respectively).
Dramatic increases in resistance were observed for
cefoxitin, clindamycin and moxifloxacin, with rates of
17.2, 32.4 and 13.6 %, respectively. The lowest resis-
tances were found for imipenem, metronidazole and
tigecycline (1.2, <1 and 1.7 %) [136].

Antimicrobial stewardship
Although most antimicrobial use occurs in the community,
the intensity of use in hospitals is far higher; hospitals are
therefore particularly important in the containment of
antimicrobial resistance.
Hospital based Antibiotic Stewardship Programs

(ASPs) can help clinicians both to optimize the treatment
of infections and reduce adverse events associated with
antibiotic use.
Given the urgent need to improve antimicrobial use in

healthcare all acute care hospitals should implement
Antibiotic Stewardship Programs.
Antimicrobial stewardship is an emerging strategy de-

signed to optimize outcomes and reduce the emergence
of resistant organisms through the pillars of surveillance,
infection control and optimizing the use of antimicrobial
therapy. Educating clinicians in the appropriate use of
antimicrobials is an essential facet of antimicrobial
stewardship [117].
Core principles of antimicrobial stewardship include

the use of antibiotic prophylaxis only when there is
proven efficacy, use of the narrowest spectrum of anti-
microbial therapy with proven efficacy, use of the least
number of agents and for the shortest length of therapy
to achieve efficacy, and appropriate antimicrobial dosing
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to maximize efficacy and limit complications. However,
the best strategies for an antimicrobial stewardship pro-
gram (ASP) are not definitively established and are likely
to vary based on local culture, policy and routine clinical
practice [15]. Observational data support a significant
association between stewardship practices and reduction
of antibiotic resistance. In a retrospective before and
after study design, analysis of two ICUs within a single
institution (trauma and surgical) before and after the im-
plementation of service specific antibiotic stewardship
protocols, Dortch et al. demonstrated a significant
reduction in the percentage of multidrug resistant gram
negative pathogens isolated and a corresponding de-
crease in broad spectrum antibiotic use [137].
The Infectious Diseases Society of America/Society for

Healthcare Epidemiology of America (IDSA/SHEA)
guidelines identify two core proactive evidence-based
strategies and several supplemental strategies for pro-
moting antimicrobial stewardship [1]: first, a proactive
strategy of either formulary restriction or a require-
ment for pre-approval for specific drugs or both, and
second, a strategy of performing prospective audit
with intervention and feedback to the prescriber. Re-
striction of antimicrobial use may be obtained either
by limited access to available antimicrobials in the
hospital through restriction of the hospital formulary,
or implementation of a requirement for preapproval
and a justification for prescribing drugs on the
restricted list. Both methods have been shown to be
effective in reducing the use and costs of restricted
antimicrobials [138].
To estimate the effectiveness of antimicrobial steward-

ship programs and evaluate their impact on the inci-
dence of antimicrobial-resistant pathogens or C. difficile
infection and on clinical outcome a Cochrane meta-
analysis was performed in 2013 [139]. Eighty-nine
studies were included. The meta-analysis showed that
interventions to decrease excessive antibiotic prescribing
for hospital inpatients reduced antimicrobial resistance
and hospital-acquired infections. Interventions to in-
crease effective prescribing improved clinical outcomes.
These data supported the use of restrictive interventions
in urgent cases. However, persuasive and restrictive
interventions were equally effective after six months.
Restrictive interventions do seem to have a greater

immediate impact than persuasive interventions.
However, with the passage of time, prescribers often find
ways to circumvent restrictions [139].
Prescribing is a complex social process. Restriction is

useful in urgent situations, but because of the reduced
effects over time, programs and strategies should be
balanced with positive actions. The ultimate goal of a
stewardship should be to stimulate a behavioral change
in prescribing practice.

In this context, education of prescribers is crucial to
convince clinicians to use antibiotics judiciously.
The supplemental strategies employed in ASP include,

implementation of guidelines and clinical pathways, anti-
microbial order forms, streamlining or de-escalation, com-
bination therapy, dose optimization, and IV-to-PO switch,
therapeutic substitution, cycling, mixing and use of com-
puter decision support. In general, several of these strat-
egies are implemented in the daily practice simultaneously
with one or both of the two core strategies.

Management of intra-abdominal infections
The treatment of patients with complicated IAI involves
both timely source control and antimicrobial therapy.
Empiric antimicrobial therapy is important in the

management of intra-abdominal infections and must be
broad enough to cover all likely organisms. Adequate
source control is mandatory in the management of
complicated IAIs.
The treatment of patients with complicated IAI in-

volves both source control and antimicrobial therapy.
Source control encompasses all measures undertaken to
eliminate the source of infection, reduce the bacterial in-
oculum and correct or control anatomic derangements
to restore normal physiologic function [140]. Inadequate
source control has been associated with increased
mortality in patients with complicated IAI [141, 142].
Surgical source control entails resection or suture of a
diseased or perforated viscus (e.g. diverticular perfor-
ation, gastroduodenal perforation), removal of the in-
fected organ (e.g. appendix, gall bladder), debridement
of necrotic tissue, resection of ischemic bowel and
repair/resection of traumatic perforations, or drainage of
infected fluid collections. The source control procedure
will depend on the patient characteristics, organ affected,
and specifically on the pathology that is encountered.
Ultrasound and CT guided percutaneous drainage of

abdominal abscesses is safe and effective in selected
patients [143–146], with 62–91 % cure rates and with
morbidity and mortality rates equivalent to those of
surgical drainage. Recent advances in interventional and
more aggressive source control techniques, such as open
abdomen strategy [147], could improve the outcome of
patients with severe complicated IAI [148].
Although new surgical techniques, supported by innova-

tive technology, have improved treatment for these
patients, the markedly reduced development of new anti-
biotics has been unable to match the rapidly increasing
phenomena of antimicrobial resistance making it a major
ongoing challenge associated with the management of
complicated IAI. Antimicrobial therapy plays an integral
role in the management of complicated IAI. The main
objectives of antimicrobial therapy in the treatment of IAI
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are to prevent local and haematogenous spread, and to
reduce late complications.

Classifications
The term intra-abdominal infections (IAI), describes a
wide heterogeneity of patient populations. A complete
classification that includes all aspects of intra-abdominal
infections does not exist. An ideal classification guiding
clinicians in treatment should include:

� the origin of source of infection;
� the anatomical extent of infection;
� the presumed pathogens involved and risk

factors for major resistance patterns; and
� the patient's clinical condition.

IAI encompass a variety of pathological conditions,
ranging from uncomplicated appendicitis to faecal peri-
tonitis. IAI are usually classified either as uncomplicated
or complicated [149].
In uncomplicated IAI, the infection only involves a

single organ and does not extend to the peritoneum.
Such patients can be managed by either surgical
resection or antibiotics [150]. In complicated IAI, the in-
fectious process extends beyond the organ, causing either
localized or diffuse peritonitis [150]. These situations
require both source control and antimicrobial therapy.
A universally accepted classification divides infective

peritonitis into primary peritonitis, secondary peritonitis
and tertiary peritonitis [151]. Primary peritonitis is a
diffuse bacterial infection (usually single organism) with-
out loss of integrity of the gastrointestinal tract, typically
seen in cirrhotic patients with ascites or patients with an
indwelling peritoneal dialysis catheter. Secondary peri-
tonitis, the most common form of peritonitis (>90 %
cases), is an acute peritoneal infection resulting from
loss of integrity of the gastrointestinal tract [152]. Exam-
ples include visceral perforations or necrosis of the
gastrointestinal tract, blunt or penetrating trauma, and
post-operative leakage of anastomoses or suture lines.
Tertiary peritonitis is defined as a recurrent infection of
the peritoneal cavity that occurs >48 h after apparently
successful and adequate surgical source control of second-
ary peritonitis [153–155]. It is more common among crit-
ically ill or immunocompromised patients and may often
be associated with highly resistant pathogens including
candida spp. It is typically associated with high morbidity
and mortality. Although tertiary peritonitis has been
accepted as a distinct entity [153–155], it represents an
evolution and complication of secondary peritonitis,
therefore the term “ongoing peritonitis” may better
indicate that it is not a different disease than secondary
peritonitis, but rather represents secondary peritonitis
lasting longer and harbouring other (selected) pathogen.

Traditionally, infections have been classified as, either
community-acquired or hospital-acquired, dependent on
the place of acquisition [155]. Hospital-acquired intra-
abdominal infections (HA-IAI) are often associated with
surgery or another invasive procedure (gastrointestinal
endoscopy, invasive radiology). The most frequent type
of HA-IAI is post-operative peritonitis (PP) [156–160],
is the most common cause of which is anastomotic
leakage [158]. In rare conditions, HA-IAI can occur in
patients hospitalized for reasons unrelated to abdominal
pathology and no prior abdominal surgery [161].
The term “healthcare-associated infection” (HCAI) is a

new term for infections acquired during the course of
receiving healthcare [162]. It includes hospital-acquired
infections but also infections in patients living in skilled
nursing facilities, having recent hospitalization within
90 days, using aggressive medical therapies (intravenous
therapy, wound dressing) at home and invasive therapies
(haemodialysis, chemotherapy, radiotherapy) in outpatient
clinics within 30 days of the index infection [162].
However, in the years after the first proposal by

Friedman et al. [162], a consensus definition of HCAI
has not been reached. A systematic review of all defini-
tions of HCAI used in clinical studies was published in
2014 [163]. The initial definition of HCAI seems to be
increasingly accepted: “Attendance at a hospital or haemo-
dialysis clinic in the previous 30 days and residence in a
nursing home or long-term care facility” [163].
Differentiating community-acquired intra-abdominal

infection (CA-IAIs) and healthcare-associated intra-
abdominal infections (HCA-IAIs) is useful to define the
presumed resistance patterns and specify patients with
increased likelihood of infection caused by MDRO.
Among patients with HCAI, those with hospital-
acquired infections may be associated with increased
mortality due to underlying patient health status and
severity criteria at the time of diagnosis.
Grading of the clinical severity of patients with

complicated IAI has been be well described by the sepsis
definitions. Sepsis is a complex, multifactorial syndrome
that may develop into conditions of varying and escalating
severity [163–165].
Mortality rates increase in patients developing organ

dysfunction and septic shock [166]. Mortality of septic
patients from abdominal origin has decreased due to
advances in management of the underlying infection and
support of failing organs, but is still high [167]. The
CIAOW study [121] described the epidemiological,
clinical, and treatment profiles of complicated IAI
worldwide. The overall mortality rate was 10.5 %, while
it was significantly higher (36.5 %) for patients with
organ dysfunction or septic shock at admission.
Recently, sepsis definitions were revised. Sepsis is

defined as life-threatening organ dysfunction caused by
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a dysregulated host response to infection. Septic shock is
defined as a subset of sepsis in which circulatory, cellular,
and metabolic abnormalities are associated with a greater
risk of mortality than with sepsis alone and should be clin-
ically identified by a vasopressor requirement to maintain
a mean arterial pressure of 65 mmHg or greater, and
serum lactate level greater than 2 mmol/L (>18 mg/dL) in
the absence of hypovolemia. Under this redefined termin-
ology, “severe sepsis” has been abandoned [168].

Antimicrobial selection
Initial antimicrobial therapy for patients with IAIs is
empiric in nature because critically-ill patients need
immediate treatment and microbiological data (culture
and susceptibility results) usually requires ≥24 h for the
identification of pathogens and antibiotic susceptibility
pattern.
Antimicrobials should be used after a treatable IAI has

been recognized or when there is a high degree of suspicion
for infection. Initial antimicrobial therapy in patients with
IAIs is typically empirical in nature because they need im-
mediate treatment (especially in critically-ill patients), and
microbiological data (culture and susceptibility results) usu-
ally requires ≥24 h for the identification of pathogens and
antibiotic susceptibility patterns. However, in non-critically
ill patients survival benefit from adequate empiric anti-
microbial therapy has not been consistently demonstrated,
even in patients with Gram-negative bacteremia [169].
Knowledge of local rates of resistance and the risk

factors that suggest an MDRO should be involved as
essential components of the clinical decision-making
process when deciding on which antimicrobial regimen
to use for empiric treatment of infection [1]. Every
clinician starting empiric therapy should know the local
epidemiology. Surveillance initiatives are important, both
in a local and in a global context. If local epidemiology
suggests that a patient has been infected with a strain
already known to be resistant to antibiotics, then in-
appropriate antimicrobial therapy, which fails to cover
known resistance patterns risks further disruption of the
natural flora and selecting for resistant variants without
providing effective treatment.
Hospitals in the United States are required to publish

an annual antibiogram that may be used as a source
guideline for selecting appropriate antibiotics based on
local resistance/susceptibility data.

Published guidelines
Different sets of guidelines for the management of
patients with IAIs have been published.
Guidelines have a great impact on clinical care. They

should incorporate stewardship principles.
Different sets of guidelines outlining the clinical man-

agement of IAIs have been published [170–178].

Historically, treatment guidelines have not taken into
consideration antimicrobial stewardship principles when
setting the priority order of antimicrobial options, and in-
stead have focused primarily on safety and efficacy data.
Guidelines have major impact on delivery of clinical

care, and on regulatory review of hospital performance.
Hopefully, these guidelines will evolve to incorporate
stewardship principles, in addition to safety and efficacy,
when setting the priority order for recommended anti-
microbial therapies.

Antimicrobial selection
Antimicrobial selection in community-acquired infections
For patients with CA-IAI, antimicrobial agents with a
narrow spectrum of activity encompassing all likely or-
ganisms should be administered. However, a patient with
risk factors for ESBL infection who is hemodynamically un-
stable may warrant empiric therapy to cover for ESBLs,
with plans to de-escalate therapy once microbiology is
known.
The major pathogens involved in community-acquired

IAI (CA-IAI) are likely to be due to a patient’s own flora.
Therefore, they are predictable and include Enterobacte-
riaceae (predominantly E. coli and Klebsiella species),
viridans group streptococci, and anaerobes (especially B.
fragilis). For patients with CA-IAI, antimicrobial agents
with a relatively narrower spectrum of activity encom-
passing wild-type strains from the above-mentioned
species should be administered. However, if patients
with CA-IAI have risk factors for infections due to ESBL
producing Enterobacteriaceae, and in particular if the
patient is hemodynamically unstable, antimicrobial
agents that are effective against ESBLs may be war-
ranted. Clinical stability and physiological well-being is
an important factor, as compromised patients will suffer
increased morbidity and mortality if initial therapy is
ineffective [179]. In contrast, less severely ill patients
may have more time for the clinician to know that initial
therapy was not active. Specific risk factors for ESBL
phenotype among infecting pathogens includes recent
exposure to antibiotics (particularly beta-lactams or
fluoroquinolones) within 90 days of IAI or known
colonization with ESBL producing Enterobacteriaceae,
[180, 181]. An additional risk may be represented by a
recent trip to a region where MDR Enterobacteriaceae
are widespread in the community [182].

Antimicrobial selection in health-care associated infections
For patients with HCA-IAI, empiric antimicrobial
regimens with broader spectra of activity should be
administered as these patients have a higher risk of
infections due to MDRO.
By contrast, for patients with HCA-IAI, antimicrobial

regimens with broader spectra of activity are preferable,
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as those patients have a higher risk of infections due to
MDROs [183]. On receiving results of susceptibility
testing, the clinician should opt for a narrow spectrum
antimicrobial agent, which covers the likely causative
organism. De-escalation of therapy must be weighed
against the clinical significance of the culture results
received as well as local epidemiology [184].

Antibiotic selection in critically Ill patients
An inadequate empiric antimicrobial regimen is associ-
ated with unfavorable outcomes in critical ill patients. In
these patients the following strategies should be always
implemented to obtain an optimal response to therapy:

� early source control procedures when indicated;
� early initiation of therapy (ideally, within 1 h);
� correct dosing;
� considering risk factor for MDRO; and
� avoiding use of identical antibiotic and the same

antibiotic class administered in the preceding
3 months.

Infections are among the main factors contributing to
mortality in intensive care units (ICU) [185]. Abdominal
sepsis is a common indication for admission to the ICU.
The abdomen is the second most common site of inva-
sive infection among critically ill patients [186]. In 2014,
the EPIC II study [187], including 13,796 adult patients
from 1265 ICUs in 75 countries, revealed that mortality
rate in patients who developed abdominal infections was
significantly higher than in patients who had other
infections (most of which were respiratory infections).
Disease severity, need for organ support, and presence
of co-morbidities were independently associated with
mortality. In patients with organ dysfunction from septic
shock, early appropriate empiric antimicrobial therapy
has a significant impact on the outcome, independent of
the site of infection [188]. The Surviving Sepsis Cam-
paign guidelines recommend intravenous antimicrobials
within the first hour of onset of sepsis and septic shock
and the use of broad-spectrum agents with adequate
penetration of the presumed site of infection [189]. An
ineffective or otherwise inadequate antimicrobial regi-
men is one of the variables more strongly associated
with unfavorable outcomes in critical ill patients [190].
Empiric antimicrobial therapy should be started as soon
as possible in patients with organ dysfunction and septic
shock [191–193].

De-escalation
The evidence on de-escalation strategies is largely re-
stricted to patients with ventilator-associated pneumonia
(VAP) [194–196] and patients with severe sepsis and
septic shock, particularily in patients with IAIs [197,

198]. In 2013, a Cochrane review on de-escalation of
antimicrobial treatment for adults with sepsis did not
find adequate evidence to support this [199]. In 2014, a
multicenter randomized trial investigating a strategy
based on de-escalation of antibiotics resulted in
prolonged duration of ICU stay and did not affect the
mortality rate [198]. Several authors have associated
antimicrobial de-escalation interventions in critically ill
patients with reductions in length of hospitalization,
inpatient antimicrobial use, adverse events, cost, and
recovery of antimicrobial-resistant microorganisms
[200, 201]. The safety and beneficial outcomes of
carbapenem de-escalation as part of an antimicrobial
stewardship program in an ESBL-endemic setting, was
also recently confirmed [202].

Antibiotic armamentarium
The choice of empiric antibiotics in patients with IAI
should be based on the severity of the infection, the
individual risk for infection by resistant pathogens, and
the local resistance epidemiology. Amoxicillin/clavula-
nate or cephalosporins in combination with metronida-
zole, are still good options for the treatment of non-severe
IAIs, with piperacillin/tazobactam being a better choice
if P. aeruginosa coverage is needed. The use of carbapen-
ems should be limited so as to preserve activity of this
class of antibiotics because of the concern of emerging
carbapenem-resistance. Ciprofloxacin and levofloxacin
are no longer appropriate first-line choices for empiric
treatment in many regions because of the prevalence of
fluoroquinolone resistance. Other options include amino-
glycosides, particularly for suspected infections by Gram
negative bacteria, and tigecycline especially when MDRO
are suspected, though caution is advised for the latter, in
the situation of a bacteremia.
Recent challenges in the management of multi-drug

resistant Gram-negative infections, especially in critically
ill patients, have reviewed the use of “old” antibiotics,
such as polymyxins and fosfomycin.
Ceftolozone/tazobactam and ceftazidime/avibactam

are new antibiotics that have been approved for treat-
ment of cIAI infections (in combination with metronida-
zole) including infection by ESBLs and P. aeruginosa,
though their role for the empirical therapy remains to be
defined.
IAI may be managed by either single or multiple anti-

microbial regimens. Table 1 presents the spectrum of ac-
tivity of antimicrobial agents for common IAI pathogens,
Table 2 presents recommended intravenous antimicrobial
doses for patients with IAI and preserved renal function.
These doses may not be adequate for patients with morbid
obesity as there are currently no specific dosing recom-
mendations for antibiotics in obese patients [203].
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Beta-lactam/beta-lactamase inhibitor combinations
Beta-lactam/beta-lactamase inhibitor combinations (BLBLI),
including ampicillin/sulbactam, amoxicillin/clavulanate,
ticarcillin/clavulanate, piperacillin/tazobactam, have an in
vitro activity against Gram-positive, Gram-negative and an-
aerobe organisms [204]. However, increasing antimicrobial
resistance to ampicillin/sulbactam and amoxicillin/clavula-
nate among E. coli and other Enterobacteriaceae including
community-acquired isolates, during the last decade, has
compromised clinical utility of these agents for empirical
therapy of serious Gram-negative infections [205,
206]. This is likely due to excessive use of amoxicillin
and amoxicillin-clavulanate in both children and adults,
particularly in the treatment of upper respiratory tract in-
fection. The combination of over use of these oral antibi-
otics in the community and potential for household
transmission of resistant E. coli strains among family
members make ampicillin/sulbactam and amoxicillin/cla-
vulanate resistance unpredictable [207]. Fortunately, most
isolates remain susceptible to other beta-lactam/beta-lac-
tamase inhibitors such as piperacillin/tazobactam. Broad-
spectrum activity of piperacillin/tazobactam, including
anti-pseudomonal and anaerobic coverage, still make it an
attractive option in the management of severe IAIs [208].
A meta-analysis of PubMed and Scopus databases

providing data for mortality among patients treated with
carbapenems, BLBLI or non- BLBLI (mainly cephalospo-
rins and fluoroquinolones), preferably as monotherapy
was published in 2013 [209]. The study reported no
statistically significant difference in mortality between
carbapenems and BLBLI administered as either empiric
or definitive therapy. The authors concluded that the
role of BLBLI should be further evaluated for definitive
treatment [209]. In a recent study of 331 unique patients
with ESBL bacteremia, piperacillin/tazobactam appeared
inferior to carbapenems in the treatment of ESBL
bacteremia [210]; the use of piperacillin/tazobactam in
ESBLs infections is still controversial [211].

Cephalosporins
Most isolates of E. coli and other Enterobacteriaceae
remain susceptible to third-generation cephalosporins.
Among this drug class, cefotaxime, ceftriaxone and
ceftizoxime, in combination with metronidazole may be
options for empirical therapy of CA-IAI, due to the rela-
tively narrow spectrum of coverage bacause these agents
lack activity against P. aeruginosa. On the other hand,
ceftazidime and cefoperazone have activity against P.
aeruginosa, but have relatively less activity against
streptococci as compared to other third-generation
cephalosporins. Cefepime, a fourth-generation cephalo-
sporin, with broader spectrum activity compared to
ceftriaxone is a poor inducer of AmpC beta-lactamase,
and is poorly hydrolyzed by the enzyme, allowing it to

be effective against AmpC-producing organisms [66].
For empiric therapy, cefepime must be combined with
metronidazole [212] because it does not possess anti-
anaerobic activity.
The newest “5th” generation cephalosporins such as

ceftobiprole have very broad-spectrum activity, exhibiting
potent in vitro activity against a number of Gram-positive
pathogens including MRSA, penicillin-resistant Strepto-
coccus pneumoniae, and Gram-negative pathogens includ-
ing AmpC producing E. coli and P. aeruginosa. Their role
towards E. faecium PBP 5 (PBP 5fm) is controversial
[213]. Ceftobiprole medocaril is approved for the treat-
ment of community-acquired pneumonia and hospital-
acquired pneumonia (excluding ventilator-associated
pneumonia), in the European Union [214, 215]. It has not
been approved for the treatment of cIAI.

Fluoroquinolones
Fluoroquinolones (FQ) have been widely used in the
treatment of intra-abdominal infections because of their
excellent activity against aerobic Gram-negative bacteria
and tissue penetration [216]. Ciprofloxacin has in vitro
activity against P. aeruginosa. Ciprofloxacin has lowest
MIC against P. aeruginosa among commonly used
fluoroquinolones such as levofloxacin and moxifloxacin.
Except for moxifloxacin, the FQ have a moderate

activity against anaerobes and have been used in
combination with metronidazole in the empiric treat-
ment of IAI.
FQ are rapidly, and almost completely, absorbed from

the gastrointestinal tract, particularly levofloxacin and
moxifloxacin. Peak serum concentrations obtained after
oral administration are very near those achieved with
intravenous administration [217]. Prior patient use of
FQ has been demonstrated as an independent risk factor
for FQ resistance [218]. Therefore, the empiric use of
FQ for IAI is discouraged in patients with recent expos-
ure to this class of antibiotics. In addition, the increasing
use of FQ in aged care facilities, particularly for the
treatment of urinary tract infections, has contributed to
the emergence of E. coli virulent strains, such as O25b-
ST131, with substantially high FQ resistance rates in
patients living at those facilities [219]. In recent years,
resistance of E.coli to FQ has risen over time [218]. The
worldwide increase in FQ resistance among E. coli and
other Enterobacteriaceasaee has limited the non-stratified
use of FQ for empirical treatment of IAI, particularly in
critically-ill patients and those with HCA-IAI [206].

Carbapenems
For decades, carbapenems have been the antibiotics of
first choice for ESBLs. The best option for targeting
ESBLs (though with no coverage of P. aeruginosa) is
ertapenem, a once daily administered carbapenem that
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Table 1 Antibiotics for treating patients with intra-abdominal infections based upon susceptibility. Use local antibiogram data for
choosing optimal antibiotics in target population

Antibiotic Enterococci Ampicillin-resistant
enterococci

Vancomycin-resistant
enterococci

Enterobacteriaceae ESBL-producing
Enterobactericeae

Pseudomonas
aeruginosa

Anaerobic
Gram-negative bacilli

Penicillins/Beta-lactamase Inhibitors

Amoxicillin/
clavulanate

+ − − + − − +

Ampicillin/
Sulbactam

+ − − + − − +/−

Piperacillin/
tazobactam

+ − − + +/− + +

Carbapenems

Ertapenem − − − + + − +

Imipenem/
cilastatin

+/−a − − + + + +

Meropenem − − − + + + +

Doripenem − − − + + + +

Fluoroquinolones

Ciprofloxacin − − − + − +b −

Levofloxacin +/− − − + − +/− −

Moxifloxacin +/− − − + − − +/−

Cephalosporins

Ceftriaxone − − − + − − −

Ceftazidime − − − + − + −

Cefepime − − − + +/− + −

Ceftolozane/
tazobactam

− − − + + + −

Ceftazidime/
avibactam

− − − + + + −

Aminoglycosides

Amikacin c c c + + +

Gentamicin c c c + + + −

Glycylcyclines

Tigecycline + + + +d + − +

5-nitroimidazole

Metronidazole
− − − − − − +

Polymyxin

Colistimethate
(Colistin)

− − − +e + + −

Glycopeptides

Teicoplanin + + − − − − −

Vancomycin + + − − − − −

Oxazolidines

Linezolid + + + − − − −
a“Imipenem/cilastatin” is more active against ampicillin-susceptible enterococci than ertapenem, meropenem and doripenem
bCiprofloxacin is more active against Pseudomonas aeruginosa than levofloxacin
cActive in synergy with other agents
dNot active against Proteus, Morganella and Providencia
eNot active against Morganella, Proteus, Providencia and Serratia
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otherwise shares the activity of imipenem, meropenem
and doripenem against most species, including ESBL
producing pathogens [220, 221]. Imipenem/cilastatin,
meropenem and doripenem provide coverage for Gram-
negative non-fermenting bacteria (e.g. P. aeruginosa and
A. baumannii). However, inappropriate use of carbapen-
ems should be avoided [222] because there is an associ-
ation with the increase in carbapenem-resistant
Enterobacteriaceae, e.g. the rapid spread of carbapene-
mases in K. pneumoniae or NDM-1 producing Entero-
bacteriaceae and P. aeruginosa [223].
Regarding Enterococcus coverage among carbapenems,

impipenem/cilastatin is most active in vitro against
ampicillin-susceptible E. faecalis while ertapenem, mero-
penem, and doripenem have limited activity against both
E. faecalis and E. faecium. In addition, carbapenems are
not generally recommended for use to treat bacteremia
due to Enterococcus spp. In carbapenemase producing K.
pneumoniae with an MIC ≤8 μg/ml, carbapenem-
containing combinations, including meropenem or
doripenem, is suggested [224].

Aminoglycosides
Aminoglycosides are particularly active against aerobic
Gram-negative bacteria and act synergistically against
certain Gram-positive organisms. They are effective
against P. aeruginosa, but are ineffective against anaer-
obic bacteria. Because of their serious toxic side effects
including nephrotoxicity and ototoxicity, some authors
do not recommend aminoglycosides for the routine
empiric treatment of community-acquired IAI. They
may be reserved for patients with allergies to beta-lactam
agents or when used in combination with beta-lactams for
treatment of IAI secondary to MDRO [225]. However,
other authors have questioned the clinical importance of
the toxic side-effects [226], and their decreased activity in
acidic environment such as pus. In any case, this class of
antibiotics remains an important option in the antimicro-
bial armamentarium for combating Gram-negative bac-
teria and widening the spectrum of the empirical therapy
when MDRO are suspected [178].

Tigecycline
Tigecycline, an antibiotic from the group of the tetracy-
clines, does not feature in vitro activity against P. aerugi-
nosa or certain Enterobacteriaceae (Proteus spp., Serratia
spp., Morganella morganii, Providencia stuartii). How-
ever, it remains a viable treatment option for compli-
cated IAI due to its favorable in vitro activity against
anaerobic organisms, enterococci, several ESBLs and
some strains of carbapenemase-producing Enterobacteri-
aceae [227]. In several trials, excess mortality was seen
in patients treated with tigecycline when compared with
other drugs; in 12 of 13 phase 3 and 4 comparative

Table 2 Recommended intravenous doses of the most commonly
used antibiotics for patients with intra-abdominal infections and
normal renal function (CrCl > 90 mL/min)

Intravenous
Antibiotic

Intravenous dosing recommendation for
patients with normal renal function
*(CrCl > 90 mL/min)

Penicillins/ Beta-lactamase Inhibitors

Amoxicillin/clavulanate 1.2 g 8-hourly

Ampicillin/Sulbactam 3 g 6-hourly

Piperacillin/tazobactam 4.5 g 6- 8-hourly or 3.375 g 6-hourly

Carbapenems

Ertapenem 1 g 24-hourly

Imipenem/cilastatin 0.5 g 6-hourly (or1 g 8-hourly)

Meropenem 1 g 8-hourly

Fluoroquinolones

Ciprofloxacin 400 mg 8–12 hourly

Levofloxacin 750 mg 24-hourly

Moxifloxacin 400 mg 24-hourly

Cephalosporins

Ceftriaxone 1–2 g 24-hourly

Ceftazidime 2 g 8-hourly

Cefepime 1–2 g 8 hourly

Ceftolozane/tazobactam 1.5 g 8-hourly

Ceftazidime/avibactam 2.5 g 8-hourly

Glycylcyclines

Tigecycline 100 mg initial dose, then 50 mg 12-hourly

Aminoglycosides

Amikacin 15–20 mg/kg 24-hourly

Gentamicin 5–7 mg/kg 24-hourly

5-nitroimidazole

Metronidazole 500 mg 6–8 hourly

Glycopeptides

Teicoplanin 12 mg/kg 12-hourly times 3 loading dose
then 12 mg/kg 24-hourly

Vancomycin 15–20 mg/kg/dose 8–12 hourly; in critically
ill patients 25–30 mg/kg loading dose

Oxazolidinonees

Linezolid 600 mg 12 hourly

Polymyxins

Colistin US: 2.5 to 5 mg/kg CBA 8–12 hourly
Europe: 9 million IU 8–12 hourly as a slow
intravenous; in critically ill patients 9 million
IU loading dose as a slow intravenous
infusion

Note–the above table provides general information, the susceptibility profile
of individual organisms should be confirmed to guide antimicrobial therapy in
all situations. Dosage should be adjusted according to the antibiotic's
pharmacokinetic/pharmacodynamic profile in each patient
Higher dosages may be used in septic shock
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clinical trials [228], all-cause mortality was found higher
in the tigecycline group versus the comparison group.
Study-level and patient-level analyses identified that
patients in the hospital-acquired pneumonia trial, par-
ticularly those with ventilator-associated pneumonia
with baseline bacteremia, were at a higher risk of clinical
failure and mortality.
A mortality analysis was used to investigate the associ-

ation of baseline factors in abdominal infections, including
severity of illness at study entry and treatment assignment,
with clinical failure and mortality. Mortality modelling
identified multiple factors associated with death which did
not include tigecycline and which were forced into the
model.
Similarly, attributable mortality, among subjects who

died of primary infection, in the cIAI studies, showed no
difference among treatments. Combined with the four
phase 3 and 4 cIAI trials that demonstrated the non-
inferiority of tigecycline to the comparator regimens, these
results suggest that deaths were less related to clinical
failure and that other factors or patient co-morbidities
were more likely to contribute to death [229].
Because of poor plasma concentration tigecycline per-

forms poorly in bacteremic patients, with a much higher
risk of failing clear bacteremia than the comparator.
Tigecycline should not be considered first line for health
care associated pneumonia, bacteremia or endocarditis.
Nonetheless, tigecycline remains an important treatment
option for patients with complicated IAI [230, 231].
Recently, tigecycline has been become an important op-
tion in managing infections due to MDR Gram negative
bacteria [232] including NDMs, KPCs, and other carba-
penemases, as some of these pathogens remain susceptible
to tigecycline. However, high failure rates in cases of
monotherapy with this antibiotic have occurred implying
that combinations therapy should be recommended [233].
Higher-dose regimens have been associated with better
outcomes than conventional administration due to Gram-
negative MDR bacteria in a cohort of critically ill patients
with severe infections [234].

Polymixins
Polymyxins, discovered in 1940s, are a group of polycatio-
nic peptide antibiotics that exhibit potent efficacy against
most gram-negative bacteria. Among all the five chemical
compounds (A–E) of polymyxins, only polymyxin B and E
(colistin) are clinically used. Since the 1970s, these prepara-
tions were practically abandoned because of reports of se-
vere adverse events. However, recent challenges in the
management of multi-drug resistant (MDR) Gram-negative
infections, especially in critically ill patients, have revived
the clinical use of polymyxins [235–237]. The nephrotox-
icity and neurotoxicity of polymyxins has been the major
limiting factor in their clinical application. Challenging

these earlier concerns, recent data, mainly from cases
series, demonstrate that the use of polymyxins is relatively
safe provided that recommended dosages are used and
renal function is closely monitored [235, 238, 239].
Recently The US Food and Drug Administration (FDA)

and European Medicines Agency (EMA) have approved
updated dose recommendations for intravenous colistin in
patients with various degrees of renal function [240].
The EMA recommendations were based on a review

of the available clinical, pharmacological and pharmaco-
kinetic data.
EMA recommended expression of colistin dose in IU

of colistimethate sodium. Based on the limited available
evidence the recommended dose in adults was 9 million
IU (approximately 300 mg) daily in 2 or 3 divided doses
as a slow intravenous infusion; in critically ill patients a
loading dose of 9 million IU was suggested. EMA sug-
gested to reduce dosage according to creatinine clearance
in patients with renal impairment.
Also US Food and Drug Administration (FDA) ap-

proved changes to the dosage and administration section
of the product label for colistimethate in the United
States. The recommended dose was 2.5 to 5 mg/kg colis-
tin base activity (CBA) per day in 2 to 4 divided doses for
patients with normal renal function, depending on the
severity of the infection. A loading dose was not recom-
mended for critically ill patients. The FDA recommended
dosing regimen accounts for renal function. The most
significant difference regards loading dose suggested in
the EU but not in the United States’ recommendations.

Fosfomycin
Renewed interest in ‘old’ antibiotics has also focused
interest in Fosfomycin. While traditionally fosfomycin
disodium was administered parenterally, several countries
have recently approved the oral administration of fosfo-
mycin tromethamine for treating urinary tract infections
(UTIs) caused by Escherichia coli and E. faecalis. Its use as
a single agent is usually restricted in critically ill patients.
However, intravenous fosfomycin has been administered
in combination with other antibiotics for the treatment of
MDR Gram-positive and Gram-negative bacteria includ-
ing KPC [241].
The daily dose of intravenous fosfomycin disodium

ranges from 12 to 16 g on average, administered in 2–4
infusions. Renal impairment significantly decreases the
excretion of fosfomycin. For intravenous administration
of fosfomycin, the doses should be reduced if the cre-
atinine clearance is less than 50 ml/min [242].
The primary limitations of fosfomycin are the lack of

established regimens for complicated infections and the
lack of availability of the intravenous formulation in
many countries [243].
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New antibiotics
Ceftolozane/tazobactam [244, 245] and ceftazidime/avi-
bactam [246, 247] have recently been approved in some
national agencies for the treatment of intra-abdominal
infections. By adding beta-lactamase inhibitor (tazobactam
or avibactam), these new agents have strong activity
against MDR Gram-negative pathogens. Unlike other
beta-lactam and beta-lactamase inhibitor combination
agents, these new agents should be combined with metro-
nidazole for complicated IAI due to limited activity against
some Bacteroides species.
These antibiotics will be valuable for treating infections

caused by MDR Gram-negative bacteria in order to
preserve carbapenems. Notably, ceftazidime/avibactam
has demonstrated consistent activity against KPC-
producing organisms [248].
In some instances that resistance can emerge to new

antibiotics very rapidly after their first clinical trials,
treatment with these new agents should be done in
parallel with continued susceptibility testing [249].
Although many reviews have been written, their precise
role as an empiric treatment for complicated IAI
remains to be defined [250]. Cautious clinical use is
advised, until their precise roles are further defined as
empirical treatment.

The effect of fungal involvement in IAI
Empiric antifungal therapy should be considered in
patients with clinical evidence of intra-abdominal infec-
tion and significant risk factors for candidiasis:

� recent abdominal surgery;
� anastomotic leaks;
� necrotizing pancreatitis; and
� failure of treatment for bacterial infections.

The epidemiological role of Candida spp. in IAI has
not yet been conclusively defined [251]. However, recent
data suggest that some specific subpopulations are at
higher risk of fungal involvement, (i.e. complicated cases
of bariatric surgery). In a recent study, Zappella et al.
[252] reported 41 % of candida-positive patients with
postoperative peritonitis following bariatric surgery. Iso-
lation of Candida spp. in samples from IAI is associated
with poor outcomes. In an observational study, Montra-
vers et al. showed that isolation of Candida spp. was an
independent risk factor of mortality in nosocomial
peritonitis patients (odds ratio, 3; 95 % confidence interval,
1.3-6.7, p < 0.001). Antifungal treatment did not improve
survival [253]. Recently, IDSA guidelines for the treatment
of invasive candidiasis were developed and explicitly
addressed candidal peritonitis [254]. Clinical evidence
supporting the use of antifungal therapy for patients with
suspected intra-abdominal invasive candidiasis is limited.

Most studies are small and uncontrolled, single-center, or
performed in specific patient cohorts. IDSA guidelines
suggested considering empiric antifungal therapy for pa-
tients with clinical evidence of intra-abdominal infection
and significant risk factors for candidiasis, including those
with recent abdominal surgery, anastomotic leaks, or
necrotizing pancreatitis, who are doing poorly despite
treatment for bacterial infections.
Several meta-analyses of antifungal prophylaxis in

high-risk surgical ICU patients have yielded conflicting
results [255–258].
For the majority of ICU patients at high invasive

candidiasis risk, a preemptive antifungal strategy, based
on clinical risk factors and microbiologic evidence of
substantial colonization, has been proposed [259].
A recent randomized, double-blind, placebo-controlled

trial assessed a preemptive antifungal approach with an
echinocandin in intensive care unit patients requiring
surgery for intra-abdominal infection [260].
The study was unable to provide evidence that pre-

emptive administration of an echinocandin was effective
in preventing IC in high-risk surgical intensive care unit
patients with intra-abdominal infections.
Preferred empiric therapy in critically ill patients or

those previously exposed to an azole is an echinocandin
(caspofungin: loading dose of 70 mg, then 50 mg daily;
micafungin:100 mg daily; anidulafungin: loading dose of
200 mg, then 100 mg daily). However, fluconazole, 800-
mg (12 mg/kg) loading dose, then 400 mg (6 mg/kg)
daily, should be still considered first-line antifungal
therapy, in hemodynamically stable patients who are
colonized with azole susceptible Candida species or who
have no prior exposure to azoles.
The duration of therapy should be determined by

adequacy of source control and clinical response.
A role for echinocandin in the management of critically

ill patients is confirmed by the increasing incidence of
fluconazole-resistant and susceptible-dose dependent
strains that should be taken into account when selecting
empiric therapy in patients with severe sepsis or septic
shock [261, 262].

Dosage
Knowledge of the pharmacokinetic and pharmacody-
namic antimicrobial properties of each antimicrobial
inform rational dosing.
Optimal use of the pharmacokinetic/pharmacodynamic

characteristics of antimicrobial agents is important for
obtaining good clinical outcomes and reduction of
resistance.
The antimicrobial dosing regimen should be established

depending on host factors and properties of antimicrobial
agents. Antimicrobial pharmacodynamics integrates the
complex relationship between organism susceptibility and
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patient pharmacokinetics. Pharmacokinetics describes the
fundamental processes of absorption, distribution, metab-
olism, and elimination and the resulting concentration-
versus-time profile of an agent administered in vivo. The
achievement of appropriate target site concentrations of
antimicrobials is essential to eradicate the relevant patho-
gen. Suboptimal target site concentrations may have im-
portant clinical implications, and may explain therapeutic
failures, in particular, for bacteria for which in vitro MICs
are high [263]. Antimicrobials typically need to reach a
site of action outside the plasma. This requires the drug to
pass through the capillary membranes. Disease and drug-
related factors can contribute to differential tissue distri-
bution [264]. Concentration gradient between the plasma
and the peritoneal space has been studied for some antibi-
otics and have shown large variability [265–268]. Com-
monly encountered situations where pharmacokinetics
change and dosing individualization may be necessary
include renal and hepatic dysfunction. Dose reductions
may be necessary to prevent accumulation and toxicity in
patients with reduced renal or hepatic function.
Knowledge of the pharmacokinetic and pharmacody-

namic antimicrobial properties of each drug including
(inhibition of growth, rate and extent of bactericidal
action, and post-antibiotic effect) may provide a more
rational determination of optimal dosing regimens in
terms of the dose and the dosing interval [269]. Optimal
use of the pharmacokinetic/pharmacodynamic relation-
ship of anti-infective agents is important for obtaining
good clinical outcomes and reduction of resistance [270].
Dosing frequency is related to the concept of time-
dependent versus concentration-dependent killing. Beta-
lactams exhibit time-dependent activity and exert optimal
bactericidal activity when drug concentrations are main-
tained above the MIC [271, 272]. Therefore, it is import-
ant that the serum concentration exceeds the MIC for
appropriate duration of the dosing interval for the anti-
microbial and the organism. Higher frequency dosing,
prolonged infusions and continuous infusions have been
utilized to achieve this effect [267]. For beta lactams,
prolonged or continuous infusions have been advocated in
order to maximize the time that the drug concentration
exceeds the MIC, whereas high peak concentrations are
not beneficial. However, large randomized controlled trials
comparing continuous with intermittent infusion of piper-
acillin/tazobactam in patients with complicated IAI [273]
as well as piperacillin/tazobactam, ticarcillin/clavulanate
or meropenem in patients with severe sepsis [274], did
not demonstrate different outcomes. These results may
not be generalizable to patients with high severity of ill-
ness and infections caused by less susceptible pathogens
with high MIC (e.g. P. aeruginosa), for which the greatest
potential for a clinically relevant benefit is predicted by
pharmacokinetic/pharmacodynamic theory, and has been

supported by some retrospective studies [275, 276].
Prolonged or continuous infusions of beta lactams should
therefore be considered for the treatment of critically ill
patients with hospital-acquired IAI.
In contrast, antibiotics such as aminoglycosides exhibit

concentration-dependent activity and should be admin-
istered in a once daily manner (or with the least possible
number of daily administrations) in order to achieve
high peak plasma concentrations.
With these agents, the peak serum concentration, and

not the time the concentration remains above the MIC, is
more closely associated with efficacy [271, 272]. In terms
of toxicity, aminoglycosides nephrotoxicity is caused by a
direct effect on the renal cortex and its uptake saturation.
Thus, an extended interval dosing strategy reduces the
renal cortex exposure to aminoglycosides and reduces the
risk of nephrotoxicity [277].
In patients with septic shock, administering an optimal

first dose is probably as equally important as to the timing
of administration [271]. This optimal first dose could be
described as a loading, or front-loaded dose and is calcu-
lated from the volume of distribution (Vd) of the drug and
the desired plasma concentration. The Vd of hydrophilic
agents (which disperse mainly in water such as beta-
lactams, aminoglycosides and glycopeptides) in patients
with septic shock may be altered by changes in the perme-
ability of the microvascular endothelium and consequent
alterations in extracellular body water. This may lead to
lower than expected plasma concentrations during the
first day of therapy resulting in sub-optimal achievement
of antibiotic levels [271].
In the setting of alterations in the volume of distribu-

tion, loading doses and/or a higher overall total daily
dose of beta-lactams, aminoglycosides, or glycopeptides
are often required to maximize the pharmodynamics
ensuring optimal drug exposure to the infection site in
patients with severe sepsis or septic shock [271].
Tissue penetration is also an important aspect because

high concentrations at the site of infection can poten-
tially overcome “resistance”. Albumin concentrations are
crucial for highly protein-bound drugs [271].
When drains have been inserted, large drainage vol-

ume outputs may also affect antibiotic concentration,
and may need to be accounted for when considering
dosage and frequency of administration.
Once an appropriate initial loading dose is achieved,

the antimicrobial regimen should be reassessed, at least
daily, because pathophysiological changes may signifi-
cantly affect drug availability in the critically ill patients.
Lower than standard dosages of renally excreted drugs
must be administered in the presence of impaired renal
function, while higher than standard dosages of renally
excreted drugs may be needed for optimal activity in
patients with glomerular hyperfiltration [271]. It should
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be noted that in critically ill patients, plasma creatinine is
an unreliable marker of renal function. The phenomenon
of “augmented renal clearance” (creatinine clearance
>130 ml/min/1.73 m2) causes subtherapeutic concentra-
tions. This phenomenon has high prevalence among
critically ill patients [278].

The value of intra-operative specimens
Obtaining microbiological cultures from blood or fluid/
tissue allows:

� to expand antimicrobial regimen if the initial choice
is too narrow; and

� to perform a de-escalation is the empirical regimen is
too broad.

They should be always performed in patients with
healthcare-associated infections or with community-
acquired infections at risk for resistant pathogens.
When a microorganism is identified in clinical cultures,

antimicrobial susceptibility testing (AST) should always
be performed and reported to guide antibiotic therapy.
A lack of impact on patient outcomes by bacterio-

logical cultures has been documented in patients with
community-acquired IAI, especially in appendicitis
[279, 280]. However, this observation may not address
the issues surrounding the threats of antibiotic resistance.
The results of microbiological testing may have great
importance for the choice of therapeutic strategy of every
patient, in particular in the adaptation of targeted anti-
microbial treatment. While the yield of blood cultures
may be relatively low in patients with IAI, clinicians
should not miss an easy opportunity to establish the
microbiologic etiology by obtaining two sets of blood cul-
tures prior to starting antibiotics, particularly in patients
admitted to the hospital in critically ill conditions. Fluid
and/or tissue culture from the site of infection should be
collected, particularly in the presence of an abscess.
Sufficient fluid volume (usually at least 1 mL of fluid or
tissue) must be collected, and then transported to the
microbiology laboratory using a transport system that
properly handles and preserves the samples to avoid dam-
age or compromise their integrity.
Obtaining microbiological results from blood or fluid/

tissue culture from the site of infection has two advan-
tages: a) it provides an opportunity to expand antimicro-
bial regimen if the initial choice was too narrow, and, b)
it also allows de-escalation of antimicrobial therapy if
the empirical regimen was too broad. When a micro-
organism is identified in clinical cultures, antimicrobial
susceptibility testing (AST) should always be performed
and reported to guide antibiotic therapy. AST measures
the ability of a specific organism to grow in the presence
of a particular drug using guidelines established by either

the Clinical or Laboratory Standards Institute (CLSI) in
United States or the European Committee for Anti-
microbial Susceptibility Testing (EUCAST) in Europe.
By the end of 2012, in several European Countries, CLSI
guidelines had been replaced by EUCAST [281]. In vitro
susceptibility results are correlated with the clinical
success or failure of an antibiotic against a particular
organism. Data are reported in the form of MIC, which
is the lowest concentration of an antibiotic that inhibits
visible growth of a microorganism. The numerical MIC
number, expressed as micrograms/ml, is usually reported
by microbiology laboratories as a categorical guide for
clinicians, ie as “susceptible”, “resistant”, or “intermedi-
ate”, according to CLSI and EUCAST criteria. In general,
EUCAST supports lower, more stringent, resistance MIC
breakpoints than CLSI, in particular for Gram-negative
bacteria [282]. However, in only a few cases have these
differences been translated into major interpretive
category discrepancies [283]. Both CLSI and EUCAST
periodically update their recommendations concerning
the interpretation of in vitro AST [284]. Recently, both
CLSI and EUCAST published new AST guidelines, but
some differences in terms of the categorization of ESBLs
still remain in the EUCAST guidelines [285]. In general,
it may be a wise practice to communicate directly with
the microbiology laboratory when antimicrobial suscep-
tibility patterns appear unusual.

Antimicrobial duration
In patients with uncomplicated IAI, and where the source
of infection is treated definitively, post-operative anti-
microbial therapy is not necessary.
In patients with complicated IAI undergoing an

adequate source-control procedure, post-operative therapy
should be shortened as much as possible after the reso-
lution of physiological abnormalities.
In the event of uncomplicated IAIs, the infection in-

volves a single organ and does not extend to the periton-
eum. When the source of infection is treated effectively by
surgical excision, post-operative antimicrobial therapy is
not necessary, as demonstrated in managing uncompli-
cated acute appendicitis or cholecystitis [177, 286–288].
In complicated IAI, the infectious process extends beyond
the organ, causing either localized or diffuse peritonitis
(examples include: perforated appendicitis, perforated
peptic ulcer, perforated diverticulitis, and post-operative
anastomotic leaks) [289, 290]. Treatment of patients with
complicated IAI generally involves both source control
and antimicrobial therapy. Antibiotics to treat IAI with
antimicrobials can prevent local and hematogenous spread
and may reduce late complications.
The optimal duration of antibiotic therapy for cIAIs is

debated. Guidelines by Surgical Infection Society (SIS)
and Infectious Diseases Society of America (IDSA),
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published in 2010 [171], recommended a treatment
course of 4 to 7 days, depending on the clinical
response. French guidelines also recommended 5 to
7 days of treatment [178]. The World Society of Emer-
gency Surgery (WSES) [174] recommended shortened
antibiotic therapy in those patients demonstrating a
positive response to treatment, without signs of persist-
ent leukocytosis or fever. The recent prospective trial by
Sawyer et al. demonstrated that in patients with compli-
cated IAI undergoing an adequate source-control pro-
cedure, the outcomes after approximately 4 days fixed-
duration antibiotic therapy were similar to those after a
longer course of antibiotics that extended until after the
resolution of physiological abnormalities [291]. Finally,
protracted antibiotic administration may not be safe; for
IAI in which a duration of therapy >7 days was pre-
scribed, an association with increased risk of subsequent
extra-abdominal infections and increased mortality, was
recently observed [292].
Duration of therapy should be shortened as much as

possible unless there are special circumstances that re-
quire prolonging antimicrobial therapy such as immuno-
suppression, or ongoing infections. Oral antimicrobials,
can substitute IV agents as soon as the patient is tolerat-
ing an oral diet so as to minimize the adverse effects
which are associated with intravenous access devices.
Where possible, conversion to oral antimicrobial agents
having high oral bioavailability (e.g. fluoroquinolones)
should be considered. Patients who have signs of sepsis
beyond 5 to 7 days of treatment warrant aggressive
diagnostic investigation to determine if an ongoing un-
controlled source of infection or antimicrobial treatment
failure is present. In the management of critically ill
patients with sepsis and septic shock clinical signs and
symptoms as well as inflammatory response markers
such as procalcitonin, although debatable, may assist in
guiding antibiotic treatment [293].
Recently, a systematic review of preclinical and clinical

studies of mediators in intra-abdominal sepsis/injury
was published [294].
Persistently high PCT in plasma was associated with

infection or with a significant increase in mortality in
patients with sepsis [295, 296].
Therefore, PCT has been used as a guide for interven-

tions or antibiotic therapy for patients with abdominal
sepsis [297]. However, other studies have not consistently
confirmed PCT as an accurate marker for sepsis or to pre-
dict patient’s response to the initial treatment [298].

Conclusions
An optimal antimicrobial approach to treating IAI
involves a delicate balance between the optimization of
empiric therapy, which improves clinical outcomes, and
the reduction of excessive antimicrobial use, which

increases the rate of emergence of antimicrobial-resistant
strains. Increasing resistance rates among Gram-negative
pathogens that are responsible for serious nosocomial
infections, including ESBL Enterobacteriaceae, MDR P.
aeruginosa and carbapenem-resistant Enterobacteriaceae
is a consequence of increasing acquisition of carbapene-
mase genes worldwide [299]. These organisms represent
an emerging threat due to the limited availability of viable
therapeutic options. This complicates the choice of the
most appropriate empiric treatment for patients with IAI.
The clinical challenge remains to find the balance between
ensuring that each individual patient is appropriately
covered for the most likely pathogens of their IAI, while
avoiding the use of overtly broad-spectrum antimicrobials
in order to preserve them for future use. The appropriate-
ness and need for antimicrobial treatment should be re-
assessed daily. Treatment duration as short as 4 days may
be sufficient for a vast majority of patients suffering from
complicated IAIs, when coupled with effective source
control.
Although most clinicians are aware of the problem of

antimicrobial resistance, most underestimate its import-
ance; judicious antimicrobial management decisions is
an integral part of responsible medication prescribing
behavior.
In Appendix recommendations for appropriate therapy

in patients with intra-abdominal infections are reported.

Appendix
Recommendations for appropriate therapy in patients
with intra-abdominal infections

� Antimicrobials should be used after a treatable IAI
has been recognized or if there is a high degree of
suspicion of an infection.

� Patient factors, the nature of the infection and
disease, and the environment all affect appropriate
planning of antimicrobial therapy.

� Empiric antimicrobial therapy should be started in
patients with IAI.

� Knowledge of local rates of resistance is an essential
component in the determination of the empiric
antimicrobial regimen for IAI.

� For patients with community-acquired IAI, empiric
agents with a narrower spectrum of activity are
sufficient.

� For patients with hospital-acquired IAI, antimicrobial
regimens with broader spectrum of activity are
preferred.

� Targeted antimicrobial therapy regimens are
appropriate when culture and antimicrobial
susceptibility test results are available.

� In uncomplicated IAI, post-operative therapy is not
usually necessary following source control.
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� In complicated IAIs, antimicrobial therapy is
usually continued after source control.

� The antimicrobial therapy should be shortened in
patients demonstrating a positive response to
treatment.

� Patients having signs of sepsis beyond 5 to 7 days
of antibiotic treatment should undergo aggressive
diagnostic investigation to determine ongoing
uncontrolled sources of infection, or antimicrobial
treatment failure.

� Where possible, conversion to oral antimicrobial
agents with high oral bioavailability should be
considered to minimize the adverse effects associated
with intravenous access devices.

� Sufficient knowledge of the general principles of
antimicrobial therapy is necessary for clinicians
treating intra-abdominal infections; this may
minimize treatment failures, and minimize the
development of antimicrobial resistance.
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